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Billingsley developed a widely used method for proving weak convergence

with respect to the sup-norm and J, -Skorohod topologies, once convergence

of the finite-dimensional distributions has been established. Here we show

that Billingsley's method works not only for J oscillations, but also for M1 r
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M functions, called sub-triadditivity, and then showing that Billingsley's
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41. Statemnent of results

Billingsley (1968) developed a widely used method for proving weak convergence with

respect to the sup-norm and JI-Skorohod topologies, once convergence of the finite-dimen-

sional distributions has been established. The idea is to replace the evaluation of proba-

bilities of large oscillations by the evaluation of the probability of large increments at fixed

given times. Here we show that Billingsley's method can be made to work not only for J

oscillations, but also for Al oscillations. We also investigate a limiting case.

We use these results in Avram and Taqqu (1987) to study the weak convergence to .

the Lvy a-stable process of normalized sums of moving averages that have at least two

non-zero coefficients. In that paper, we show that J1 -weak convergence does not hold and

we provide sufficient conditions for A 1 convergence. N

Let

(1.1a) J(Xl.-X2,r 3 ) = min( O 2 - zI. i 3 -T2!).

(1.1b) AI(XI X2 X.3 ) = the distance from .r2 to Izr,.r3)

S{J0 if X2 E xj -fa'

J(X],X2,:r3) otherwise.

Let H stand for either J or M, set

Hz(11,t, 2) = H Z(11 ), Z(t). Z(t 2 )).

and define the H oscillation of Z(t) as

(1.2) wH(Z) - sup Hz(tl,t,t 2 ).

r<f 2  1'b

This wH is of interest because, if Z, art, D[O, 11 processes whose finite-dimensional dis-

tributions converge to those of a process Z, then the H1-weak convergence of Z,, to Z is

equivalent to the convergence in probability of w.6 ) toO, uniformly inn, as 6 approaches

0 (see Skorohod (1956), Theorem 3.2.1).

%4
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Throughout the paper, we will consider a process Z(t). 0 < t < 1. satisfying the

assumption

(A) P{Hz(ti," 2 ) } Lc-'(t2 -

for some constants L > 0, v > 0 and 0 > 0.

We shall also assume that

(B) There exists a number n so that Z(t) is pathwise constant on
(', "I _ for i = 0,1,..n - 1.

Condition (B) is one of convenience and it will be weakened in the case 0 > 0 (see Corollary

I below.)

The following result states that P{ H(z) >_ t} satisfies a bound similar to that of

P{Hz(tlt,t2) _ (} given in (A).

Theorem 1. Let H stand for either J or M. Let Z(t) be a process satisfying assumptioraI

(A) and (B). Then, Z also satisfies

(1.3) p ,H (Z) > C} < (v-, ,n) L- 6 ,

where

C,, C (v,3)(lnn)2v+2  if= =0

denotes a constant independent of f,6 and the distribution of Z.

Theorem 1 is proved in this section.

Remarks. (1) Throughout the paper, we adopt the convention that "constants" may

depend on L, and fl, but not on e, b and the distribution of Z. Dependence or independence

on n will be spelled out in each case.

(2) When H = J, Theorem 1 reduces basically to Theorem 12.5 of Billingsley (1968).

(3) When 0 > 0, C(i,, 0, n) is independent of n. Assumption (B) can then be replaced

by Z(t) E Djo, 1] a.s.. Indeed, fix n and divide 10,1] in 2n equal parts; then, apply

Theorem 1 to the step function approximation Zn(t) of Z(t) built by using the values of

3



Z at i/2",i = 1,".. ,2". Since Z(t) E D[o, 1] a.s. implies that alrnost all paths of Z arcu

right-continuous and ub (Zn) -6(Z) a.s., we ha'e.

P{ ,H(Z) _ E} : lira P{l4(Z") _ } _ C(v.3)L,-6 3 ,

and hence

Corollary 1. Let H stand for either J or A and let Z(1) b( a process satisfying (A). uith

f3 > 0, and with paths in D[O, 11 a.s.. Then

__ p
(1.4) P{.,H(z) > }<C(v,3)L - ;.

where C(v, 3) is a constant.

Theorem 1 is proved by identifying a common property of the J and .41 functions.,

which we call sub-triadditit'ity. and then by showing that Billingsley's approach in the case

of the J function can be adequately modified to apply to any sub-triadditive function.

First some notation; let

(0 11? - (ti.t.t 2 )- 0< 11 < < 1

For any function f : [0.11 - R, and interval I = ItItl. we introduce three new

functions:

(1.5) fI ( = (t 2.t2 ) :: sUp f(tI.,I.t .2 )
ft 11J12

f 0, 113-. R-, defined by

(1.6) f*(t1,t,t2) := SUP f (t' , t, t'), .
t',E 111

t'2 E tt2

and

(1.7) -= ] ' ,2) sup f(a,b,c). .
9I <a<b<c<12 ;t

Billingsley's method consists of showing successively that the bound in assumption (A)

leads to similar bounds for probabilities involving Hz, H' and ,H(Z). The next theorem

4
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is our basic result. It identifies conditions for the first two steps of the extension. narmely

Hz -* z -' HR and uses the notion of sub-triadditivity defined in Section 3.

Theorem 2. (aj Let Z(t) be a process satisfying assumptions (A) and (B). and let fz bt

a random functio: 10. 1]. - R- which, is a.s i,,,,,r sub-triodditie (see (8.1), (S. 1; a,,d

(5.8) for a definition).

* If

(1.8) Pjfz(t.,t,t 2 ) (1 L-"(t2 - t,)'3

for some constants L > 0, v > 0 and 3 > 0, then

(1.9) PJfz(t,,t 2 )> } C_2K(t. 3. ri)L(- "(-t 1 )1-

where { K(P,3) if 3 > 0.
(LK(,,3)(1og 2 ) if 3 = 0

(see (2.4) for the ezact formula for the constant K(v,3. n)).

(b) If fz is in addition outer sub-triadditit'e (see (3.S).(3.4) for a definition), then

(1.10) P fz(ti t2) < a(v, 3,n)L-(t 2 -

where
A A(v, 0) if 3 > 0

A(v, 3,An) = A(v, 3)(lg 2 n)2 ' 2  if 3= 0

(see (8.10) for the ezact formula for the constant A(v, 3, n).)

Theorem 2 is proved in Section 3.

The last step of the extension W -* wH(Z) always works, as the next Lemma shows.

Lemma 1. If

P{f'z(t,,t 2) _ } < L( (t 2 -t,)
]

then

Pjw6(fz) < } < 2"°Lf-'b".

P5



u'here

w6 fz) sup fz(tI.t-t 2).
Ii t2 IO~t 2 -l

Proof of Lenma 1. Let m = f6-'1 -16-1] + 1 and partition 10. 1] with p?

t,, = 1,... ,rn, t, I - t, < 6 where to = 0 and tm- = 1. Note that {W6(fz) - } implies

{ max f'(t,,t,. 2 ) > f}. Hence
_=0, ...r- I

M--a

P' Lw6(fz) > (P t-t- 2) _

< (m -

<

I

Theorem 1 follows now as a particular case of Theorem 2(b), since the functions

Jz(ti,t.t 2) and Mz(tI,t,t 2) are a.s. inner and outer sub-triadditive (see Appendix).

When /3 = 0, a better bound than in (1.3) may be obtained, if Z satisfies a stronger

assumption than (A), namely

(A') PJH (tt,t2) > I LC-'(t2 -t,)' - 3-

where

(11 )H '(tj,t,t2) := sup H z(t't, t'),

and where H stands for either J or Al. Because the function H is inner sub-triadditive

(see Appendix), one can apply Theorem 2(a). This yields

P{Hz(tl,t) c} < 2[log2(4n)]"+iLc"Jl

where we used (2.4) to evaluate K (v,O,n). Applying Lemma 1, we obtain

Theorem 3. Let H stand for either J or Af, and let Z(t) satisfy assumption (A') with

= 0, and assumption (B). Then

(1.12) P W H (Z)_ :} <4[logz (4n)]vIL(-'.  4

% 1
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The paper is organized as follows:

In Section 2 we give a general formulation of the classical method of bisection used in

Billingsley (1968).

In Section 3 we define sub-triadditivity and prove Theorem 2. using the method of

bisection.

The sub-triadditivity of J, Al, -nd f, is established in the Appendix.

2. The Bisection Method

The bisection method seems to have originated with Menchoff (1923) in the context of

a maximal inequality for partial sums of orthogonal random variables (see Stout (1974),

Th. 2.3.1). It is used by Billingsley (1968) to establish a more general maximal inequality.

The following proposition is a formalization of the bisection method.

Consider a random field g9 indexed by subintervals I of 10. 1). For every I C 10. 11.

denote by I' the first half of I, and by I" the second half of I. Let ni( ) denote Lebesgue

measure.

Proposition 1. Suppose that a random field gr satisfies the inequality

(2.1) gj !5 max(gp.,9gj") + hI

where

(2.2) P{h1 _ :} <M(-'(r(I))' O,

with M constant, v > 0, 3 > 0. Suppose also that there exists an integer n such that for

every J C 10, 1) with m(J) < -, one has

(2.3) P{Og > } - -- (m(J))I4 # .

Then, for every I C 10, 1],

P{gj t} < M K(v,0.n)t-(m(I))+L"

7J
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where

/I1 2-,'-1]-o-' if > o
(2.4) K(v, /,n)

log2(4n)]" if 3 = 0.

Remark. In general. we would expect M' = MIK(v. 3. n) ", nM, since [0, 1] is composed

of n intervals on which the bound (2.3) holds. Proposition 1, however, shows that, in fact.

when 8 > 0, A' can be made ndependent of n, and even for 3 = 0 the growth is at most

logarithmic in n.

Proof. We split I C 10, 11 in two halves, split each half again, and so on, until, after

k = flog 2 [. m(1)11 < log [rnm(1)1 + 1 = log 2 2nm(I)1 < log 2 (2n)

splittings, we end up with intervals of size less than .

Let I) denote any interval which appeared at the k - j splitting: thus Ik = 1, and 10

is some interval such that m(Io) < . We show now by induction on j that

(2.5) Pjg 1  C], Al I)'

where the sequence c) is given by

(2.6) c0 = 1 (c) + c-. ,  
,-

For j 0, this is just assumption (2.3). For j _ 1, let P and I' denote the two halves of

I,. Then

P{max(gJ1gr') > } 2P 11 >

2 c' 1 MG( ' m"(I.).'.1
1.Mf C', t

Relation (2.6) now follo;vq from the fact, that if X, Y, Z are random variables satisfying

O< X <1' + Z, P{Z > t} _ Al - ' and P{Y > e} <cMt ',then

P{X> }< inf [P{Y>(1- A)r}+P{Z, > }]
O<A<I J

(2.7) < inf Mt Vc(I - A) - I' + A V]:
-O<A<I .

M('-(1 + C;w' ) V"

V V-

del-% . . , ."0" .- . - .- . . . - . - . ",- . .. . - - . . . . - -. . .



i
Using (2.6) with 0 = 0 yields

( 1 + (Ck)1 = . k + 1.

and

Ck = (k + 1)"- 1 < (log 2 4?,)"-

On the other hand, if 3 > 0. then

= - 2 - ], ,(Ck).. < Y i 2

yielding (2.4). *

3. Inner and outer sub-triaddivity

We focus at first on deterministic functions H defined on

[Ii]j X {(I ,X2.-X3) :O0< X1  X -X 2 }

or defined on all of R3.

Definition. A function H : [0, 113 - R- is called inner sub-triodditite if it satisfies

(3.1) H(xl,X, X 2 ) _ H(x 1 ,x,y) + H(x 1 ,y, X 2 )

whenever x S X 5 Y < X2, and

(3.2) H(z,z,X2 ) H H(y,z,z 2 ) + H(XI, X2 )

whenever z 5 y (1 z < x2.

A function H : R3 - R' is called inner 8ub-triadditi, e if it satisfies (3.1) and (3.2) for

any reals Z,z,z 2,y.

Definition. A function H : [0, 1]3 --+ R + is called outer sub-triadditite if it satisfies

(3.3) H(xl,z,z 2 ) :5 H(zl,x,y) + H(z,. 2 ,Y)

9
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whenever x, X 5 X 2 !5 y, and

(3.4) H(zI,z..2) < H(1.z. 2 ) H y.x],xj

whenever y < x, < X < X2.

A function H :R 3 - R- is called outer sub-triuddtirt if it satisfies (3.3) and /3.4 f(.r

any X1,X, X2,Y in R.

J and l are examples of functions that are both inner and outer sub-triadditive (su

Appendix). We show next why inner or outer sub-triadditivity are useful properties. But

first. some notation.

If I = Itl, t 2] is an interval, let t denote the middle point in I. and let I' It1, t/f, I"

[t,t 2 ] denote the two half intervals of I.

Lenirna 2. (a) If the function f :I. 11 - 1 R .is ivcr sub-triadditi . th(TI

(3.5) f< maxfi.fp " + f (t 1t0-t2)"

(b) If, moreover, f i1s outer sub-triadditirc, th n

(3.6f <r /./,axY f f f -f f .tI.t2.

Proof (a) If, < tj, then by (3.1).

f (t) t~t2) <- f (t) t.t I)+ f (t IA t2)m

5- f l' + fNtl'tl'2)"

while if t > t1, by (3.2) we have similarly

f(t'I, 2) < f," + f(t 1  
ti t 2)

(b) If t] < a < b < tj < c < t 2 , then

f(a,b,c) <_ f(a,b, tl) + f(a,tt,c) (by inner sub-triadditivity)

< f(a,b, tl) + f(ti,tj,r) + f(t ,a,tj) (by outer sub-triadditivity)

< f(a,b,t,) + f(ta,t) + f(t 1It,.t 2 ) + f(f 1 .C,t 2 ) (by outer sub-triadditivity) %

f- + f! + f1 + f(t 1It .t 2 ) A.

< R.H.S. of (3.6).

. ........ ..-... . .......U.. -.. . . . - .. . , , , . .- . , . . _ . .. , . . .. . . . . , . : . - , .. - . . -- . . ..... . - .,, . . , . - , .. . . ..-. . . - .



In the same way. we get

(3-7) f (a, b, c) !5 R. H.S. of (3.6)

when t I < a < tj < b < c < t2. and since (3.7) is obvious when o. b, E P' or o. b.c r I".

(3.6) holds.

We consider now an a.s. random sub-triadditive function of a process Z, deniotcd fz.

Recall that we assume that the process Z satisfies assumption (B). We will always assume

that random sub-triadditive functions fz also satisfy

whenever (,),(t,t') and (i2 ,t'2) are pairs of points for which Z is constant on the

interval between them.

Note that both Hz and H satisfy (3.8), where H is either J or Al.

We will now prove Theorem 2.

Proof of Theorem 2. (a) The result follows from Proposition 1 of Section 2. applied to

the functions g, = !Z(11,12) and hi = fzti.,t,, 2). Indeed, (2.1) holds by Lemma 2a. For

(2.3), note that if J = [I],t2l is such that t2 -11 < 11, then by Assumption (B) on Z and

by Assumption (3.8) on fz we have

P Ig. = P fzth 2) I
= P MfZi t1 ) c JZ(tit2t 2~)

" 2LC(1p~ 2 - t)10

Thus (2.3) holds with M = 2L, and clearly (2.2) holds also with Ml 2L. We get then by

Proposition 1

Plfz(J 1 !5 2K(v,f3,n)LK(1'(2 -(]I#

with K(v.,O,n) given by (2.4).

J* % ro



(b) The result follows again from Proposition 1, this time applied to

gl= fz(t,,t 2 )

and

= fz(ti,tl) + fZ(t.12) + fz(tf. tlt*2).

Relation (2.1) holds by Lemm 21.

We check now (2.2).

!<<t{Z(I) > (1,~}+ P f (III)

+ L(+A)V(t 2 - ti) l- ]
_<in [c(1 - A)-L' + ,A-vIL<-'(t2 -t,''"

The last step holds by part (a), with

c = 2' 1-K(v,3,n) = '-3Kv,3n)

As in (2.7), we then get

(.) P h, (I + 21- 3'(v- ) K(v,3. n)~' Lfvt

SK(v,,3. n) + 2 13'(t,-1) L-"(t 2 -to ,

since K(v,/3, n) > 1.

To check (2.3), let J = jt1 ,t 21 be such that t2 - Then. as in part (a).

P _ < 2L-'(t2 - t01
-3.

Hence (2.2) and (2.3) hold with

M = K(v,#,n)max{2,[1 + 2' ,3(.,)]v-t, }.

Applying Proposition 1, we get ,,

P~f~J) t A(z.,f,On)Lc -(t 2

12

%.v. %.. %1
. t -' '11 li | |" - l| lV l - I .. . I .. .. - ]-%



where

(3.10) A( }, , n) K2 (i,/3, n) max{2 2,1 + 2-0/

{l-2-0/("-1)]-(2v-2)max{2,[1+2- '(L'"1)1]'I) if0 >0

3v-'l(log 2(4n))2v 2  if 49=0.

This concludes the proof. |

Appendix

Lemma Al. The deterministic functions J and Ml defined in (1.1) are inner and outer

sub-triadditive.

Proof. (a) Inner sub-triaddititity

Since J and M are symmetric in z 1 ,z 2, it is enough to check (3.1). For J, we must

show that

(A. 1) ix - xiI A IX - X21 !5 Ix - xjj A Ix - yj + Ix, - yI A 1Y - X21

holds.

If jz - zjj < I - yl, then

R.H.S. of (A.1) > Ix - > L.H.S. of (A.1).

If Ix - yI < Ix - z, 1, then either the R.H.S. of (A.1) equals Ix - yj + Ix, - y > Ix - x, 1,

or the R.H.S. of (A.1) equals IX - YJ + IY - X21 > IX - X'21. Hence (A.1) holds.

Now for M, we check again (3.1) in different cases:

(a) z E [X,X 2]; then M(XI,X,X 2 ) = 0.

If z V [ I,z 21, w.l.o.g., let z < x, < X2 ; we have the following subcases:

(b) £<X< X1<z 2 ; then

M( 1 , Z, X2 ) = X - X X1 - Y- M(IYX).

-W N1N



(c) X<Y<X1 <X 2 :then

M(2.,,,) = X1 - X = (Y - X) - C+ - Y) = M(],x, Y) + M(X 1 Y,X 2 ).

(d) z < zl < y: then

M(z 1 ,z, 2 ) = X, - x = M(z 1 ,x.y).

(b) Outer sub-triaddiivity~

Since J, M are symmetric in x1 ,X2, it is enough to check (3.3). For J, we must show

that

(A.2) Ix - x I^ IX- 21 5 Ix - X IA Ix - j + I- - A IX2 - Y1

holds. The only case different from part (a) is when Ix-yI < x-xjj and 1"2-X I < IX2- Yl-

In this case,

R.H.S. of (A.2) = IX - YI + IX2 - X1 > I12 - Y! > 12 - X1 > L.H.S. of (A.2).

For H = Mf, we assume, w.l.o.g, X < X1 < X2. If y < X < X < -2.

M(X, , z 2 ) = X - 2< X2- = M(z, X. Y).

If X< y < X1 < X2,

M(2"|,X, 2) X X < (Y X ) + (2- Y) = M(XIIXY) + -N(X, X2,y),

If z < zI <1y,

M(XI, X,X2) = X) - X2 = M(X), X, y).

Lemma A2. If H R 3 -* R + is inner sub-triadditive, then the funetion H . [0, 1]3 -R+

defined by

H (t|,t,t2) = sup H(Z(tl),Z(t),Z(t2))

is inner aub-triadditive.

14
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Proof. Since H,( 1,1, 2 ) is defined only for ordered triples 1j < t < 12, we have to

check that

(A.3a) If tl < t < u < t 2 , then H (t, t,t 2 ) !5 H (t,t, u) + H (t, u, t2)

and

(A.3b) If tl < U < t < f2, then H (t1 ,t,t 2 ) ! H (u,t,t 2 ) + H(ti,U, 2 ).

Since the proofs are similar, we show only (A.3a). Also, for convenience, assume that the

sup is obtained, that is,

H .(t , t, t2) = H(Z(t' )-.Z(t),ZWt)),

for some tl, with 1 I t < < 2

Let now t < U < t 2 ; if u > t', then, obviously, H(tj,t,t12 ) = H (t1 ,t,u). and (A.3a)

holds. Suppose, hence u < t2; by the inner sub-triadditivity of H,

H (Z(t',), Z(t), Z(t 2)) H_ I(Z (t', ), Z (), Z(u)) + H-I(Z (t )Z(u), Z (12))

<_ H'(t,,t, v) + H (t,,t 2).

The result follows by taking sup in the L.H.S. *

15
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